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Sequence data

 Often data arise as sequences:

 Time-series such as weather data or financial indices

 Documents are sequences of words, and their relative positions have meaning

 Recorded speech or music

 Handwriting, such as doctor's notes
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1. Time series

 A time series can be any data obtained via measurements at regular intervals, 

like the daily price of a stock, the hourly electricity consumption of a city, or 

the weekly sales of a store. Common tasks for time series including

1. Forecast: Predicting what will happen next in a series

2. Classification: Assign one or more categorical labels to a time series. For 

instance, given the time series of the activity of a visitor on a website, classify 

whether the visitor is a bot or a human

3. Event detection: Identify the occurrence of a specific expected event within a 

continuous data stream. For instance,  “hot word detection,” where a model 

monitors an audio stream and detects utterances like “Ok Google” or “Hey Alexa.”

4. Anomaly detection: is typically done via unsupervised learning because you 

often don’t know what kind of anomaly you’re looking for, so you can’t train on 

specific anomaly examples
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https://github.com/microsoft/ML-For-Beginners/blob/main/7-TimeSeries/1-Introduction/README.md


Time series

 When working with time series, you’ll encounter a wide range of domain-

specific data representation techniques

 For instance, the Fourier transform consists of expressing a series of values in terms 

of a superposition of waves of different frequencies. The Fourier transform can be 

highly valuable when preprocessing any data that is primarily characterized by its 

cycles and oscillations

 Other feature engineering may include the lag feature, moving average, extract 

trend component, rolling windows statistics, etc.

 There are various statistical models and methods for time series
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https://www.kaggle.com/learn/time-series


2. Natural Language Processing (NLP)

 In computer science, we refer to human languages, like English or Mandarin, 

as “natural” languages, to distinguish them from languages that were designed 

for machines, like C++, R, or Python

 Every machine language was designed: its starting point was a human engineer writing 

down a set of formal rules to describe what statements you could make in that language 

and what they meant 

 With human language, it’s the reverse: usage comes first, rules arise later. Natural language 

was shaped by an evolution process, much like biological organisms— that’s what makes it 

“natural.” Its “rules,” like the grammar of English, were formalized after the fact and are 

often ignored or broken by its users

 As a result, while machine-readable language is highly structured and rigorous, natural 

language is messy—ambiguous, chaotic, sprawling, and constantly in flux
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https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/1-Introduction-to-NLP/README.md


Natural Language Processing (NLP)

 That’s what modern NLP is about: using machine learning and large datasets to

give computers the ability to understand language and to ingest a piece of 

language as input and return something useful

 “What’s the topic of this text?” (text classification)

 “Does this text contain abuse?” (content filtering)

 “Does this text sound positive or negative?” (sentiment analysis)

 “What should be the next word in this incomplete sentence?” (language modeling)

 “How would you say this in Chinese?” (translation)

 “How would you summarize this article in one paragraph?” (summarization)
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https://demo.allennlp.org/


Featurization or vectorization

 Text standardization

 Text standardization is a basic form of feature engineering that aims to erase encoding 

differences that you don’t want your model to have to deal with
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 Text splitting (tokenization)

 Word-level tokenization, 𝑁-gram tokenization, 

or Character-level tokenization

 Vocabulary indexing

 Encode each token into a numerical 

representation. Keep a small dictionary (restrict 

the number of tokens) and replace the unknown 

word with 1 (Out Of Vocabulary, OOV token)

 Masking is usually represented by 0



Featurization or vectorization – The model

 The bag-of-word model

 Treat input words as a set, discarding their original order, but may use 𝑁-gram tokenization 

to inject a small amount of local word order information into the model

 The sequence model

 In order to preserve the order, you’d start by representing input samples as sequences of 

integer indices. Then, you map each integer to a vector to obtain vector sequences

 To condense our representation and preserve the semantic relationship between these 

words, we may use Word embeddings instead of one-hot encoding 

 Transformer

 Order-agnostic, yet it injects word-position information, which enables it to simultaneously 

look at different parts of a sentence while still being order-aware
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https://developers.google.com/machine-learning/guides/text-classification/step-4


Featurization or vectorization - Word Embedding

 Embeddings are pretrained on very large corpora of documents, using methods 

similar to principal components. word2vec and GloVe are popular
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• Sparse

• High-dimensional

• Hardcoded

• Dense

• Low-dimensional

• Learned from data

• Structured

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/


Featuralizion or vectorization - Representing groups of words

 Bag-of-words models: discard order and treat text as an unordered set of words

 From a dictionary, identify the 10𝐾 most frequently occurring words

 Create a binary vector of length 𝑝 = 10𝐾 for each document, and score a 1 in every 

position that the corresponding word occurred

 The main advantage of this encoding is that you can represent an entire text as a single 

vector using multi-hot, count encoding or TF-IDF
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 Bag-of-words are unigrams. 

To take context into 

consideration, we can use 

bag-of-n-gram

 the cat sat on the mat using Bag 

of 2-grams {"the cat", "cat sat", 

"sat on", "on the", "the mat“}

https://www.oreilly.com/library/view/applied-text-analysis/9781491963036/ch04.html

https://developers.google.com/machine-learning/guides/text-classification/step-3
https://www.oreilly.com/library/view/applied-text-analysis/9781491963036/ch04.html


3. Recurrent Neural Networks (RNN)

 We will discuss recurrent neural networks (RNNs), a class of nets that can 

predict the future

 They can analyze time series data

 They can take sentences, documents, or audio samples as input, making them 

extremely useful for natural language processing or speech recognition

 They can work on sequences of arbitrary lengths

 RNNs are not the only types of NN capable of handling sequential data: for 

small sequences, a regular dense network can do the trick; and for very long 

sequences, such as audio samples or text, convolutional neural networks or 

transformers can actually work quite well
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Recurrent Neural Networks (RNN)

 RNNs build models that take into account the sequential nature of the data

 The features for each observation is a sequence of vectors 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝐿}

 The target 𝑌 is often a single variable such as Sentiment, or a one-hot vector for multiclass. 

It can also be a sequence, such as the same document in a different language

 The same weights 𝑊, 𝑈 and 𝐵 are used at each step - hence the term recurrent

 We can represent this tiny network against the time axis

12
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Recurrent Neural Networks (RNN)

 The hidden layer is a sequence of vectors (hidden states) 𝐴𝑙, receiving as input 

𝑋𝑙 as well as 𝐴𝑙−1. 𝐴𝑙 produces an output 𝑂𝑙
 The 𝐴𝑙 sequence represents an evolving model for the response that is updated as each 

element 𝑋𝑙 is processed and is thus known as memory cells

 Since the output of a recurrent neuron at time step 𝑡 is a function of all the inputs from previous 

time steps, you could say it has a form of memory

 You can create a layer of recurrent neurons. Both the inputs and outputs are vectors now
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Recurrent Neural Networks (RNN)

 Suppose 𝑋𝑙 = (𝑋𝑙1, 𝑋𝑙2, … , 𝑋𝑙𝑝) has 𝑝 components, and 𝐴𝑙 = (𝐴𝑙1, 𝐴𝑙2, … , 𝐴𝑙𝐾) has 

𝐾 components. Then the computation at the 𝑘th components of hidden unit 𝐴𝑙 is 
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Types of RNN

 An RNN can be divided into several configuration

 Sequence-to-sequence network is useful for predicting time series such as stock prices

 A sequence-to-vector network. For example, you could feed the network a sequence of words 

corresponding to a movie review, and the network would output a sentiment score
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 A vector-to-sequence network. For 

example, the input could be an image (or 

the output of a CNN), and the output could 

be a caption for that image

 You could have a sequence-to-vector 

network, called an encoder, followed by a 

vector-to-sequence network, called a 

decoder. For example, this could be used 

for translating a sentence from one 

language to another



Sequence-to-sequence (seq2seq) learning

 A sequence-to-sequence model takes a sequence as input and translates it 

into a different sequence and is compose of
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 An encoder model turns the source 

sequence into an intermediate 

representation

 A decoder is trained to predict the next 

token 𝑖 in the target sequence by looking 

at both previous tokens and the encoded 

source sequence

2. Inference

1. Training



Deep RNN

 It is quite common to stack multiple layers of cells. This means it can have 

additional hidden layers, where each hidden layer is a sequence, and treats the 

previous hidden layer as an input sequence
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4. Fighting the Unstable Gradients Problem

 Nonsaturating activation functions (e.g., ReLU) may not help here; in fact, they 

may actually lead the RNN to be even more unstable during training

 If SGD updates the weights in a way that increases the outputs slightly at the first time step. 

Because the same weights are used at every time step, the outputs at the second time step 

may also be increased, and so on, until the outputs explode. This is the same for the 

gradient. Try to monitor using Tensorboard and apply gradient clipping

 We will usually use a lower learning rate or use hyperbolic tangent instead of ReLU

 Batch Normalization does not yield good results with RNNs empirically

 Another form of normalization often works better with RNNs: Layer Normalization. This idea 

was introduced in a 2016 paper: it is very similar to Batch Normalization, but instead of 

normalizing across the batch dimension, it normalizes across the features dimension
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Fighting the Unstable Gradients Problem

 How to correctly apply dropout in recurrent networks isn’t a trivial question

 In 2016, Yarin Gal determined the proper way to use dropout with a recurrent network: the 

same dropout mask (the same pattern of dropped units) should be applied at every timestep, 

instead of using a dropout mask that varies randomly from timestep to timestep

 What’s more, in order to regularize the representations formed by the recurrent gates of 

layers such as GRU and LSTM, a temporally constant dropout mask should be applied to 

the inner recurrent activations (hidden states) of the layer (a recurrent dropout mask). 

Using the same dropout mask at every timestep allows the network to propagate its error 

through time properly
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Tackling the Short-Term Memory Problem

 Due to the data goes through when traversing an RNN. After a while, the 

RNN’s state contains virtually no trace of the first inputs

 Various types of cells with long-term memory have been introduced

 The Long Short-Term Memory (LSTM) cell
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 You can think of 𝒉 as the short-term and 

𝒄 the new dataflow as the long-term state

 LSTM cell can learn to recognize an 

important input (that’s the role of the 

input gate), store it in the long-term state, 

preserve it for as long as it is needed 

(that’s the role of the forget gate), and 

extract it whenever it is needed (output 

gate)

https://distill.pub/2019/memorization-in-rnns/


Tackling the Short-Term Memory Problem

 The Gated Recurrent Unit (GRU) cell was proposed by Kyunghyun Cho et al. 

in a 2014 paper that also introduced the Encoder–Decoder network

 Both state vectors are merged into a single vector 𝒉
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 A single gate controller 𝒛 controls both the 

forget gate and the input gate. If the gate 

controller outputs a 1, the forget gate is open 

and the input gate is closed (1 – 1 = 0). If it 

outputs a 0, the opposite happens

 There is no output gate; the full state vector is 

output at every time step. However, there is a 

new gate controller 𝑟 that controls which part 

of the previous state will be shown to the main 

layer (𝑔)

Input gate

Forget gate

New gate



Tackling the Short-Term Memory Problem

 A 1D convolutional layer slides several kernels across a sequence, producing a 

1D feature map per kernel. Each kernel will learn to detect a single very short 

sequential pattern (no longer than the kernel size)

 If you use 10 kernels, then the layer’s output will be composed of 10 1-dimensional 

sequences (all of the same length)

 Equivalently you can view this output as a single 10-dimensional sequence. This means 

that you can build a neural network composed of a mix of recurrent layers and 1D 

convolutional layers (or even 1D pooling layers)

 Model can learn to preserve the useful information, dropping only the unimportant details. 

By shortening the sequences, the convolutional layer may help the GRU layers detect 

longer patterns

22



Bidirectional RNN

 A bidirectional RNN is a common RNN variant that can offer greater 

performance than a regular RNN on NLP tasks

 RNNs are notably order-dependent for time series data: they process the timesteps of their 

input sequences in order, and shuffling or reversing the timesteps can completely change 

the representations the RNN extracts from the sequence
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 But in NLP, it is often preferable to look ahead 

at the next words and the order are not that 

important as in time series

 A bidirectional RNN exploits the order sensitivity 

of RNNs: it uses two regular RNNs each of 

which processes the input sequence in one 

direction, and then merges their representations



5. Attention

 Attention has fast become one of the most influential ideas in deep learning

 Input features get assigned “attention scores,” which can be used to inform the next 

representation of the input
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 Smart embedding space would 

provide a different vector 

representation for a word 

depending on the other words 

surrounding it. That’s where self-

attention comes in

Attention matrix



Attention

 Crucially, there’s nothing that requires A, B, and C to refer to the same input 

sequence

 This concept is widely used in search engine 

 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 = 𝑠𝑢𝑚(𝑣𝑎𝑙𝑢𝑒𝑠 ∗ 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒_𝑠𝑐𝑜𝑟𝑒𝑠 (𝑞𝑢𝑒𝑟𝑦, 𝑘𝑒𝑦𝑠))

 We may need to use projection to see a specific characteristic

 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 = 𝑠𝑢𝑚(𝑊𝑣 𝑣𝑎𝑙𝑢𝑒𝑠 ∗ 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒_𝑠𝑐𝑜𝑟𝑒𝑠 (𝑊𝑘𝑞𝑢𝑒𝑟𝑦, 𝑊𝑞𝑘𝑒𝑦𝑠))

25 https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/self_v7.pptx

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/self_v7.pptx


Attention

 Multi-head attention refers to the fact that the output space of the self-attention 

layer gets factored into a set of independent subspaces, learned separately
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 The presence of the learnable dense 

projections enables the layer to learn 

some projection

 Independent heads helps the layer 

learn different groups of features for 

each token, where features within 

one group are correlated with each 

other but are mostly independent 

from features in a different group

 Notice outputs are computed in 

parallel for the sequence in contrast 

to RNN



Transformer

 Add additional dense layer, residual connection and layer normalization

 Together, these bells and whistles form the Transformer encoder
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 The decoder is very similar to the Transformer encoder, 

except that an extra attention block is inserted between the 

self-attention block applied to the target sequence and the 

dense layers of the exit block

 Manually injects order information in the representations 

(Positional encoding that can be learned or manually 

created)

 More variants can be found here

𝑄
𝐾𝑉

https://d2l.ai/chapter_attention-mechanisms-and-transformers/self-attention-and-positional-encoding.html#positional-encoding
https://github.com/huggingface/transformers


More transformer
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https://aman.ai/primers/ai/autoregressive-vs-autoencoder-models/


Conclusion

 When you have data where ordering matters, and in particular for time series 

data, recurrent networks are a great fit and easily outperform models that first 

flatten the temporal data. The two essential RNN layers are the LSTM layer 

and the GRU layer

 There are two kinds of NLP models: bag-of-words models that process sets of words or N-

grams without taking into account their order, and sequence models that process word 

order. A bag-of-words model is made of Dense layers, while a sequence model could be an 

RNN, a 1D convnet, or a Transformer

 Transformers are a powerful model that relates to CNN and RNN, but the computational 

complexity is high

 We have presented some variants of RNNs. Many more complex variations exist. 

Especially with the development of self-supervised training
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Resources

 Tutorials

 https://d2l.ai/chapter_recurrent-neural-networks/index.html#

 https://www.kaggle.com/learn/time-series

 https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries

 https://demo.allennlp.org/reading-comprehension/bidaf-elmo

 https://github.com/microsoft/ML-For-Beginners/tree/main/6-NLP

 https://www.kaggle.com/learn-guide/natural-language-processing

 https://www.deeplearning.ai/resources/natural-language-processing/

 https://aman.ai/primers/ai/autoregressive-vs-autoencoder-models/
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https://d2l.ai/chapter_recurrent-neural-networks/index.html
https://www.kaggle.com/learn/time-series
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Resources

 Tokenizer

 https://github.com/APCLab/jieba-tw

 https://github.com/ckiplab/ckiptagger

 Time series libraries

 https://github.com/blue-yonder/tsfresh

 https://github.com/alan-turing-institute/sktime

 https://github.com/timeseriesAI/tsai

 NLP libraries

 https://github.com/explosion/spaCy

 https://github.com/RaRe-Technologies/gensim

 https://github.com/sloria/textblob

 https://github.com/huggingface/transformers

33

https://github.com/APCLab/jieba-tw
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Resources

 Visualization

 https://github.com/jessevig/bertviz

 https://github.com/HendrikStrobelt/LSTMVis

 https://distill.pub/2019/memorization-in-rnns/

 Complexity comparison

 https://stackoverflow.com/questions/65703260/computational-complexity-of-self-attention-

in-the-transformer-model

 https://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec16.pdf
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https://github.com/HendrikStrobelt/LSTMVis
https://github.com/HendrikStrobelt/LSTMVis
https://distill.pub/2019/memorization-in-rnns/
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Word Embedding
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https://projector.tensorflow.org/


Training RNNs

 To train an RNN, the trick is to unroll it through time and then simply use 

regular backpropagation. This strategy is called backpropagation through time 

(BPTT)

 Like in regular backpropagation, there is a first forward pass through the unrolled network. 

Then the output sequence is evaluated using a loss function 𝐿(𝑌(0), 𝑌(1) , …𝑌(𝑇)) (where 𝑇

is the max time step). Note that this cost function may ignore some outputs 

 The gradients of that cost function are then propagated backward through the unrolled 

network (represented by the solid arrows in the next slides). Finally, the model parameters 

are updated using the gradients computed during BPTT. Note that the gradients flow 

backward through all the outputs used by the loss function, not just through the final output 

Moreover, since the same parameters 𝑊 and 𝑏 are used at each time step, backpropagation 

will do the right thing and sum overall time steps
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https://d2l.ai/chapter_recurrent-neural-networks/bptt.html


Training RNNs
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Beam search

 Suppose you train an Encoder–Decoder model, and use to translate the French 

sentence “Comment vas-tu?” to English. You hope that it will output the proper 

translation (“How are you?”), but unfortunately it outputs “How will you?” 

 Looking at the training set, you notice many sentences such as “Comment vas-tu jouer?” 

which translates to “How will you play?”

 Unfortunately, in this case it was a mistake, and the model could not go back and fix it, so 

it tried to complete the sentence as best it could. By greedily outputting the most likely 

word at every step, it ended up with a suboptimal translation

 Beam search keeps track of a short list of the 𝑘 most promising sentences and at each 

decoder step it tries to extend them by one word, keeping only the 𝑘 most likely sentences 

by replicate the model
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Self-attention vs CNN

 CNN: self-attention that can only attends in a receptive field

 Consider images as a vector set

 Self-attention is a CNN with learnable receptive field

 CNN is good for less data while attention is good for more data
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0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 0 0 0 0 1
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0 1 0 0 1 0
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A vector

CNN
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Self-attention

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/self_v7.pptx

https://arxiv.org/pdf/2010.11929.pdf
https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/self_v7.pptx


RNNRNN

FCFC

RNNRNN

FCFC

RNNRNN

FCFC

RNNRNN

FCFC

parallel

nonparallel

hard to consider

easy to 

consider

Self-attentionSelf-attention

memory

Self-attention vs RNN

 Transformers are RNNs

48 https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/self_v7.pptx

https://arxiv.org/abs/2006.16236
https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/self_v7.pptx


When to use sequence models over bag-of-words models?

 It turns out that when approaching a new text-classification task, you should 

pay close attention to the ratio between the number of samples in your training 

data and the mean number of words per sample

 This is the rule-of-thumb for test classification task
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Time Series Forecasting - New-York Stock Exchange Data

 Three daily time series for the period December 3, 1962 to December 31, 1986 

(6,051 trading days):
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 Log trading volume. This is the fraction of 

all outstanding shares that are traded on that 

day, relative to a 100-day moving average 

of past turnover

 Dow Jones return. This is the difference 

between the log of the Dow Jones Industrial 

Index on consecutive trading days

 Log volatility. This is based on the values 

of daily price movements

 Goal: predict Log trading volume tomorrow, 

given its observed values up to today, as well as 

those of Dow Jones return and Log volatility

𝑣𝑡

𝑟𝑡

𝑧𝑡



Autocorrelation

 The autocorrelation at lag 𝑙 is the correlation of all pairs (𝑣𝑡 , 𝑣𝑡−𝑙) that are 𝑙
trading days apart

 These sizable correlations give us confidence that past values will be helpful in 

predicting the future

 This is a curious prediction problem: the response 𝑣𝑡 is also a feature 𝑣𝑡−𝑙!
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RNN Forecaster

 We only have one series of data! How do we set up for an RNN?

 We extract many short mini-series of input sequences 𝑋𝑙 = (𝑋1, 𝑋2, … , 𝑋𝐿)
with a predefined length 𝐿 known as the lag

 𝑋1 =

𝑣𝑡−𝐿
𝑟𝑡−𝐿
𝑧𝑡−𝐿

, 𝑋2 =

𝑣𝑡−𝐿+1
𝑟𝑡−𝐿+1
𝑧𝑡−𝐿+1

, … , 𝑋𝐿 =

𝑣𝑡−1
𝑟𝑡−1
𝑧𝑡−1

, and 𝑌 = 𝑣𝑡

 Since 𝑇 = 6,051, with 𝐿 = 5 we can create 6,046 such (𝑋, 𝑌) pairs

 We use the first 4,281 as training data, and the remaining as test data. We fit an 

RNN with 12 hidden units per lag step (i.e. per 𝐴𝑙)
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RNN Results for NYSE Data

 Predictions and truth for test period (black: truth, orange: predicted)

 𝑅2 = 0.42 for RNN

 𝑅2 = 0.18 for straw man - use yesterday's value of Log trading volume to 

predict that of today
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Document Classification: IMDB Movie Reviews

 The IMDB corpus consists of user-supplied movie ratings for a large collection 

of movies. Each has been labeled for sentiment as positive or negative. 

 We have labeled training and test sets, each consisting of 25,000 reviews, and 

each balanced with regard to sentiment

 We wish to build a classier to predict the sentiment of a review
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Lasso versus Neural Network on IMDB Reviews

 Bag-of-words with simpler lasso logistic regression model works as well as 

neural network

 Python was used to fit the lasso model, and is very effective because it can 

exploit sparsity in the 𝑋 matrix
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RNN and IMDB Reviews

 The document feature is a sequence of words 𝑊𝑙 1
𝐿. We typically truncate/pad 

the documents to the same number 𝐿 of words (we use 𝐿 = 500)

 Each word 𝑊𝑙 is represented as a one-hot encoded binary vector 𝑋𝑙 (dummy variable) of 

length 10𝐾, with all zeros and a single one in the position for that word in the dictionary

 This results in an extremely sparse feature representation, and would not work well

 Instead we use a lower-dimensional pretrained word embedding matrix 𝐸
(𝑚 × 10𝐾) for mapping

 This reduces the binary feature vector of length 10𝐾 to a real feature vector of dimension 

𝑚 ≪ 10𝐾 (e.g. 𝑚 in the low hundreds.)
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RNN on IMDB Reviews

 We then fit a more exotic RNN than the one displayed - a LSTM with long and 

short term memory. Here 𝐴𝑙 receives input from 𝐴𝑙−1 (short term memory) as 

well as from a version that reaches further back in time (long term memory). 

Now we get 87% accuracy

 These data have been used as a benchmark for new RNN architectures. The 

best reported result found was around 97%

 For more leaderboards on common benchmark dataset, see 

https://paperswithcode.com/sota
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https://paperswithcode.com/sota/sentiment-analysis-on-imdb
https://paperswithcode.com/sota

