
Sequence processing using recurrent

neural network

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

Sequence data

 Often data arise as sequences:

 Time-series such as weather data or financial indices

 Documents are sequences of words, and their relative positions have meaning

 Recorded speech or music

 Handwriting, such as doctor's notes

2

25ms

1. Time series

 A time series can be any data obtained via measurements at regular intervals,

like the daily price of a stock, the hourly electricity consumption of a city, or

the weekly sales of a store. Common tasks for time series including

1. Forecast: Predicting what will happen next in a series

2. Classification: Assign one or more categorical labels to a time series. For

instance, given the time series of the activity of a visitor on a website, classify

whether the visitor is a bot or a human

3. Event detection: Identify the occurrence of a specific expected event within a

continuous data stream. For instance, “hot word detection,” where a model

monitors an audio stream and detects utterances like “Ok Google” or “Hey Alexa.”

4. Anomaly detection: is typically done via unsupervised learning because you

often don’t know what kind of anomaly you’re looking for, so you can’t train on

specific anomaly examples
3

https://github.com/microsoft/ML-For-Beginners/blob/main/7-TimeSeries/1-Introduction/README.md

Time series

 When working with time series, you’ll encounter a wide range of domain-

specific data representation techniques

 For instance, the Fourier transform consists of expressing a series of values in terms

of a superposition of waves of different frequencies. The Fourier transform can be

highly valuable when preprocessing any data that is primarily characterized by its

cycles and oscillations

 Other feature engineering may include the lag feature, moving average, extract

trend component, rolling windows statistics, etc.

 There are various statistical models and methods for time series

4

https://www.kaggle.com/learn/time-series

2. Natural Language Processing (NLP)

 In computer science, we refer to human languages, like English or Mandarin,

as “natural” languages, to distinguish them from languages that were designed

for machines, like C++, R, or Python

 Every machine language was designed: its starting point was a human engineer writing

down a set of formal rules to describe what statements you could make in that language

and what they meant

 With human language, it’s the reverse: usage comes first, rules arise later. Natural language

was shaped by an evolution process, much like biological organisms— that’s what makes it

“natural.” Its “rules,” like the grammar of English, were formalized after the fact and are

often ignored or broken by its users

 As a result, while machine-readable language is highly structured and rigorous, natural

language is messy—ambiguous, chaotic, sprawling, and constantly in flux

5

https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/1-Introduction-to-NLP/README.md

Natural Language Processing (NLP)

 That’s what modern NLP is about: using machine learning and large datasets to

give computers the ability to understand language and to ingest a piece of

language as input and return something useful

 “What’s the topic of this text?” (text classification)

 “Does this text contain abuse?” (content filtering)

 “Does this text sound positive or negative?” (sentiment analysis)

 “What should be the next word in this incomplete sentence?” (language modeling)

 “How would you say this in Chinese?” (translation)

 “How would you summarize this article in one paragraph?” (summarization)

6

https://demo.allennlp.org/

Featurization or vectorization

 Text standardization

 Text standardization is a basic form of feature engineering that aims to erase encoding

differences that you don’t want your model to have to deal with

7

 Text splitting (tokenization)

 Word-level tokenization, 𝑁-gram tokenization,

or Character-level tokenization

 Vocabulary indexing

 Encode each token into a numerical

representation. Keep a small dictionary (restrict

the number of tokens) and replace the unknown

word with 1 (Out Of Vocabulary, OOV token)

 Masking is usually represented by 0

Featurization or vectorization – The model

 The bag-of-word model

 Treat input words as a set, discarding their original order, but may use 𝑁-gram tokenization

to inject a small amount of local word order information into the model

 The sequence model

 In order to preserve the order, you’d start by representing input samples as sequences of

integer indices. Then, you map each integer to a vector to obtain vector sequences

 To condense our representation and preserve the semantic relationship between these

words, we may use Word embeddings instead of one-hot encoding

 Transformer

 Order-agnostic, yet it injects word-position information, which enables it to simultaneously

look at different parts of a sentence while still being order-aware

8

https://developers.google.com/machine-learning/guides/text-classification/step-4

Featurization or vectorization - Word Embedding

 Embeddings are pretrained on very large corpora of documents, using methods

similar to principal components. word2vec and GloVe are popular

9

• Sparse

• High-dimensional

• Hardcoded

• Dense

• Low-dimensional

• Learned from data

• Structured

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/

Featuralizion or vectorization - Representing groups of words

 Bag-of-words models: discard order and treat text as an unordered set of words

 From a dictionary, identify the 10𝐾 most frequently occurring words

 Create a binary vector of length 𝑝 = 10𝐾 for each document, and score a 1 in every

position that the corresponding word occurred

 The main advantage of this encoding is that you can represent an entire text as a single

vector using multi-hot, count encoding or TF-IDF

10

 Bag-of-words are unigrams.

To take context into

consideration, we can use

bag-of-n-gram

 the cat sat on the mat using Bag

of 2-grams {"the cat", "cat sat",

"sat on", "on the", "the mat“}

https://www.oreilly.com/library/view/applied-text-analysis/9781491963036/ch04.html

https://developers.google.com/machine-learning/guides/text-classification/step-3
https://www.oreilly.com/library/view/applied-text-analysis/9781491963036/ch04.html

3. Recurrent Neural Networks (RNN)

 We will discuss recurrent neural networks (RNNs), a class of nets that can

predict the future

 They can analyze time series data

 They can take sentences, documents, or audio samples as input, making them

extremely useful for natural language processing or speech recognition

 They can work on sequences of arbitrary lengths

 RNNs are not the only types of NN capable of handling sequential data: for

small sequences, a regular dense network can do the trick; and for very long

sequences, such as audio samples or text, convolutional neural networks or

transformers can actually work quite well

11

Recurrent Neural Networks (RNN)

 RNNs build models that take into account the sequential nature of the data

 The features for each observation is a sequence of vectors 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝐿}

 The target 𝑌 is often a single variable such as Sentiment, or a one-hot vector for multiclass.

It can also be a sequence, such as the same document in a different language

 The same weights 𝑊, 𝑈 and 𝐵 are used at each step - hence the term recurrent

 We can represent this tiny network against the time axis

12
Time

Recurrent Neural Networks (RNN)

 The hidden layer is a sequence of vectors (hidden states) 𝐴𝑙, receiving as input

𝑋𝑙 as well as 𝐴𝑙−1. 𝐴𝑙 produces an output 𝑂𝑙
 The 𝐴𝑙 sequence represents an evolving model for the response that is updated as each

element 𝑋𝑙 is processed and is thus known as memory cells

 Since the output of a recurrent neuron at time step 𝑡 is a function of all the inputs from previous

time steps, you could say it has a form of memory

 You can create a layer of recurrent neurons. Both the inputs and outputs are vectors now

13

Recurrent Neural Networks (RNN)

 Suppose 𝑋𝑙 = (𝑋𝑙1, 𝑋𝑙2, … , 𝑋𝑙𝑝) has 𝑝 components, and 𝐴𝑙 = (𝐴𝑙1, 𝐴𝑙2, … , 𝐴𝑙𝐾) has

𝐾 components. Then the computation at the 𝑘th components of hidden unit 𝐴𝑙 is

𝐴𝑙𝑘 = 𝑔 𝑤𝑘0 +෍

𝑗=1

𝑝

𝑤𝑘𝑗𝑋𝑙𝑗 +෍

𝑠=1

𝐾

𝑢𝑘𝑠𝐴𝑙−1,𝑠

𝑂𝑙 = 𝛽0 +෍

𝑘=1

𝐾

𝛽𝑘𝐴𝑙𝑘

 Often we are concerned only with the prediction 𝑂𝐿 at the last unit. For squared error

loss, and 𝑛 sequence/response pairs, we would minimize. See appendix for training

with BPTT

෍

𝑖=1

𝑛

(𝑦𝑖 − 𝑜𝑖𝐿)
2 =෍

𝑖=1

𝑛

𝑦𝑖 − 𝛽0 +෍

𝑘=1

𝐾

𝛽𝑘𝑔 𝑤𝑘0 +෍

𝑗=1

𝑝

𝑤𝑘𝑗𝑥𝑖𝐿𝑗 +෍

𝑠=1

𝐾

𝑢𝑘𝑠𝑎𝑖,𝐿−1,𝑠

2

14

Types of RNN

 An RNN can be divided into several configuration

 Sequence-to-sequence network is useful for predicting time series such as stock prices

 A sequence-to-vector network. For example, you could feed the network a sequence of words

corresponding to a movie review, and the network would output a sentiment score

15

 A vector-to-sequence network. For

example, the input could be an image (or

the output of a CNN), and the output could

be a caption for that image

 You could have a sequence-to-vector

network, called an encoder, followed by a

vector-to-sequence network, called a

decoder. For example, this could be used

for translating a sentence from one

language to another

Sequence-to-sequence (seq2seq) learning

 A sequence-to-sequence model takes a sequence as input and translates it

into a different sequence and is compose of

16

 An encoder model turns the source

sequence into an intermediate

representation

 A decoder is trained to predict the next

token 𝑖 in the target sequence by looking

at both previous tokens and the encoded

source sequence

2. Inference

1. Training

Deep RNN

 It is quite common to stack multiple layers of cells. This means it can have

additional hidden layers, where each hidden layer is a sequence, and treats the

previous hidden layer as an input sequence

17

4. Fighting the Unstable Gradients Problem

 Nonsaturating activation functions (e.g., ReLU) may not help here; in fact, they

may actually lead the RNN to be even more unstable during training

 If SGD updates the weights in a way that increases the outputs slightly at the first time step.

Because the same weights are used at every time step, the outputs at the second time step

may also be increased, and so on, until the outputs explode. This is the same for the

gradient. Try to monitor using Tensorboard and apply gradient clipping

 We will usually use a lower learning rate or use hyperbolic tangent instead of ReLU

 Batch Normalization does not yield good results with RNNs empirically

 Another form of normalization often works better with RNNs: Layer Normalization. This idea

was introduced in a 2016 paper: it is very similar to Batch Normalization, but instead of

normalizing across the batch dimension, it normalizes across the features dimension

18

Fighting the Unstable Gradients Problem

 How to correctly apply dropout in recurrent networks isn’t a trivial question

 In 2016, Yarin Gal determined the proper way to use dropout with a recurrent network: the

same dropout mask (the same pattern of dropped units) should be applied at every timestep,

instead of using a dropout mask that varies randomly from timestep to timestep

 What’s more, in order to regularize the representations formed by the recurrent gates of

layers such as GRU and LSTM, a temporally constant dropout mask should be applied to

the inner recurrent activations (hidden states) of the layer (a recurrent dropout mask).

Using the same dropout mask at every timestep allows the network to propagate its error

through time properly

19

Tackling the Short-Term Memory Problem

 Due to the data goes through when traversing an RNN. After a while, the

RNN’s state contains virtually no trace of the first inputs

 Various types of cells with long-term memory have been introduced

 The Long Short-Term Memory (LSTM) cell

20

 You can think of 𝒉 as the short-term and

𝒄 the new dataflow as the long-term state

 LSTM cell can learn to recognize an

important input (that’s the role of the

input gate), store it in the long-term state,

preserve it for as long as it is needed

(that’s the role of the forget gate), and

extract it whenever it is needed (output

gate)

https://distill.pub/2019/memorization-in-rnns/

Tackling the Short-Term Memory Problem

 The Gated Recurrent Unit (GRU) cell was proposed by Kyunghyun Cho et al.

in a 2014 paper that also introduced the Encoder–Decoder network

 Both state vectors are merged into a single vector 𝒉

21

 A single gate controller 𝒛 controls both the

forget gate and the input gate. If the gate

controller outputs a 1, the forget gate is open

and the input gate is closed (1 – 1 = 0). If it

outputs a 0, the opposite happens

 There is no output gate; the full state vector is

output at every time step. However, there is a

new gate controller 𝑟 that controls which part

of the previous state will be shown to the main

layer (𝑔)

Input gate

Forget gate

New gate

Tackling the Short-Term Memory Problem

 A 1D convolutional layer slides several kernels across a sequence, producing a

1D feature map per kernel. Each kernel will learn to detect a single very short

sequential pattern (no longer than the kernel size)

 If you use 10 kernels, then the layer’s output will be composed of 10 1-dimensional

sequences (all of the same length)

 Equivalently you can view this output as a single 10-dimensional sequence. This means

that you can build a neural network composed of a mix of recurrent layers and 1D

convolutional layers (or even 1D pooling layers)

 Model can learn to preserve the useful information, dropping only the unimportant details.

By shortening the sequences, the convolutional layer may help the GRU layers detect

longer patterns

22

Bidirectional RNN

 A bidirectional RNN is a common RNN variant that can offer greater

performance than a regular RNN on NLP tasks

 RNNs are notably order-dependent for time series data: they process the timesteps of their

input sequences in order, and shuffling or reversing the timesteps can completely change

the representations the RNN extracts from the sequence

23

 But in NLP, it is often preferable to look ahead

at the next words and the order are not that

important as in time series

 A bidirectional RNN exploits the order sensitivity

of RNNs: it uses two regular RNNs each of

which processes the input sequence in one

direction, and then merges their representations

5. Attention

 Attention has fast become one of the most influential ideas in deep learning

 Input features get assigned “attention scores,” which can be used to inform the next

representation of the input

24

 Smart embedding space would

provide a different vector

representation for a word

depending on the other words

surrounding it. That’s where self-

attention comes in

Attention matrix

Attention

 Crucially, there’s nothing that requires A, B, and C to refer to the same input

sequence

 This concept is widely used in search engine

 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 = 𝑠𝑢𝑚(𝑣𝑎𝑙𝑢𝑒𝑠 ∗ 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒_𝑠𝑐𝑜𝑟𝑒𝑠 (𝑞𝑢𝑒𝑟𝑦, 𝑘𝑒𝑦𝑠))

 We may need to use projection to see a specific characteristic

 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 = 𝑠𝑢𝑚(𝑊𝑣 𝑣𝑎𝑙𝑢𝑒𝑠 ∗ 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒_𝑠𝑐𝑜𝑟𝑒𝑠 (𝑊𝑘𝑞𝑢𝑒𝑟𝑦, 𝑊𝑞𝑘𝑒𝑦𝑠))

25 https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/self_v7.pptx

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/self_v7.pptx

Attention

 Multi-head attention refers to the fact that the output space of the self-attention

layer gets factored into a set of independent subspaces, learned separately

26

 The presence of the learnable dense

projections enables the layer to learn

some projection

 Independent heads helps the layer

learn different groups of features for

each token, where features within

one group are correlated with each

other but are mostly independent

from features in a different group

 Notice outputs are computed in

parallel for the sequence in contrast

to RNN

Transformer

 Add additional dense layer, residual connection and layer normalization

 Together, these bells and whistles form the Transformer encoder

27

 The decoder is very similar to the Transformer encoder,

except that an extra attention block is inserted between the

self-attention block applied to the target sequence and the

dense layers of the exit block

 Manually injects order information in the representations

(Positional encoding that can be learned or manually

created)

 More variants can be found here

𝑄
𝐾𝑉

https://d2l.ai/chapter_attention-mechanisms-and-transformers/self-attention-and-positional-encoding.html#positional-encoding
https://github.com/huggingface/transformers

More transformer

28

https://aman.ai/primers/ai/autoregressive-vs-autoencoder-models/

Conclusion

 When you have data where ordering matters, and in particular for time series

data, recurrent networks are a great fit and easily outperform models that first

flatten the temporal data. The two essential RNN layers are the LSTM layer

and the GRU layer

 There are two kinds of NLP models: bag-of-words models that process sets of words or N-

grams without taking into account their order, and sequence models that process word

order. A bag-of-words model is made of Dense layers, while a sequence model could be an

RNN, a 1D convnet, or a Transformer

 Transformers are a powerful model that relates to CNN and RNN, but the computational

complexity is high

 We have presented some variants of RNNs. Many more complex variations exist.

Especially with the development of self-supervised training

29

References

[1] Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd

Edition Chapter 15~16

[2] An Introduction to Statistical Learning with Applications in R. Second

Edition Chapter 10

[3] Deep learning with Python, 2nd Edition Chapter 10~11

[4] https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php

30

https://www.oreilly.com/library/view/hands-on-machine-learning/9781098125967/
https://www.statlearning.com/
https://www.manning.com/books/deep-learning-with-python-second-edition
https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php

Appendix

31

Resources

 Tutorials

 https://d2l.ai/chapter_recurrent-neural-networks/index.html#

 https://www.kaggle.com/learn/time-series

 https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries

 https://demo.allennlp.org/reading-comprehension/bidaf-elmo

 https://github.com/microsoft/ML-For-Beginners/tree/main/6-NLP

 https://www.kaggle.com/learn-guide/natural-language-processing

 https://www.deeplearning.ai/resources/natural-language-processing/

 https://aman.ai/primers/ai/autoregressive-vs-autoencoder-models/

32

https://d2l.ai/chapter_recurrent-neural-networks/index.html
https://www.kaggle.com/learn/time-series
https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries
https://demo.allennlp.org/reading-comprehension/bidaf-elmo
https://github.com/microsoft/ML-For-Beginners/tree/main/6-NLP
https://www.kaggle.com/learn-guide/natural-language-processing
https://www.deeplearning.ai/resources/natural-language-processing/
https://aman.ai/primers/ai/autoregressive-vs-autoencoder-models/

Resources

 Tokenizer

 https://github.com/APCLab/jieba-tw

 https://github.com/ckiplab/ckiptagger

 Time series libraries

 https://github.com/blue-yonder/tsfresh

 https://github.com/alan-turing-institute/sktime

 https://github.com/timeseriesAI/tsai

 NLP libraries

 https://github.com/explosion/spaCy

 https://github.com/RaRe-Technologies/gensim

 https://github.com/sloria/textblob

 https://github.com/huggingface/transformers

33

https://github.com/APCLab/jieba-tw
https://github.com/ckiplab/ckiptagger
https://github.com/blue-yonder/tsfresh
https://github.com/alan-turing-institute/sktime
https://github.com/timeseriesAI/tsai
https://github.com/explosion/spaCy
https://github.com/RaRe-Technologies/gensim
https://github.com/sloria/textblob
https://github.com/huggingface/transformers

Resources

 Visualization

 https://github.com/jessevig/bertviz

 https://github.com/HendrikStrobelt/LSTMVis

 https://distill.pub/2019/memorization-in-rnns/

 Complexity comparison

 https://stackoverflow.com/questions/65703260/computational-complexity-of-self-attention-

in-the-transformer-model

 https://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec16.pdf

34

https://github.com/HendrikStrobelt/LSTMVis
https://github.com/HendrikStrobelt/LSTMVis
https://distill.pub/2019/memorization-in-rnns/
https://stackoverflow.com/questions/65703260/computational-complexity-of-self-attention-in-the-transformer-model
https://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec16.pdf

Word Embedding

35

https://projector.tensorflow.org/

Training RNNs

 To train an RNN, the trick is to unroll it through time and then simply use

regular backpropagation. This strategy is called backpropagation through time

(BPTT)

 Like in regular backpropagation, there is a first forward pass through the unrolled network.

Then the output sequence is evaluated using a loss function 𝐿(𝑌(0), 𝑌(1) , …𝑌(𝑇)) (where 𝑇

is the max time step). Note that this cost function may ignore some outputs

 The gradients of that cost function are then propagated backward through the unrolled

network (represented by the solid arrows in the next slides). Finally, the model parameters

are updated using the gradients computed during BPTT. Note that the gradients flow

backward through all the outputs used by the loss function, not just through the final output

Moreover, since the same parameters 𝑊 and 𝑏 are used at each time step, backpropagation

will do the right thing and sum overall time steps

36

https://d2l.ai/chapter_recurrent-neural-networks/bptt.html

Training RNNs

37

Beam search

 Suppose you train an Encoder–Decoder model, and use to translate the French

sentence “Comment vas-tu?” to English. You hope that it will output the proper

translation (“How are you?”), but unfortunately it outputs “How will you?”

 Looking at the training set, you notice many sentences such as “Comment vas-tu jouer?”

which translates to “How will you play?”

 Unfortunately, in this case it was a mistake, and the model could not go back and fix it, so

it tried to complete the sentence as best it could. By greedily outputting the most likely

word at every step, it ended up with a suboptimal translation

 Beam search keeps track of a short list of the 𝑘 most promising sentences and at each

decoder step it tries to extend them by one word, keeping only the 𝑘 most likely sentences

by replicate the model

38

Self-attention vs CNN

 CNN: self-attention that can only attends in a receptive field

 Consider images as a vector set

 Self-attention is a CNN with learnable receptive field

 CNN is good for less data while attention is good for more data

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

A vector

CNN

47

Self-attention

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/self_v7.pptx

https://arxiv.org/pdf/2010.11929.pdf
https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/self_v7.pptx

RNNRNN

FCFC

RNNRNN

FCFC

RNNRNN

FCFC

RNNRNN

FCFC

parallel

nonparallel

hard to consider

easy to

consider

Self-attentionSelf-attention

memory

Self-attention vs RNN

 Transformers are RNNs

48 https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/self_v7.pptx

https://arxiv.org/abs/2006.16236
https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/self_v7.pptx

When to use sequence models over bag-of-words models?

 It turns out that when approaching a new text-classification task, you should

pay close attention to the ratio between the number of samples in your training

data and the mean number of words per sample

 This is the rule-of-thumb for test classification task

41

Time Series Forecasting - New-York Stock Exchange Data

 Three daily time series for the period December 3, 1962 to December 31, 1986

(6,051 trading days):

42

 Log trading volume. This is the fraction of

all outstanding shares that are traded on that

day, relative to a 100-day moving average

of past turnover

 Dow Jones return. This is the difference

between the log of the Dow Jones Industrial

Index on consecutive trading days

 Log volatility. This is based on the values

of daily price movements

 Goal: predict Log trading volume tomorrow,

given its observed values up to today, as well as

those of Dow Jones return and Log volatility

𝑣𝑡

𝑟𝑡

𝑧𝑡

Autocorrelation

 The autocorrelation at lag 𝑙 is the correlation of all pairs (𝑣𝑡 , 𝑣𝑡−𝑙) that are 𝑙
trading days apart

 These sizable correlations give us confidence that past values will be helpful in

predicting the future

 This is a curious prediction problem: the response 𝑣𝑡 is also a feature 𝑣𝑡−𝑙!

43

RNN Forecaster

 We only have one series of data! How do we set up for an RNN?

 We extract many short mini-series of input sequences 𝑋𝑙 = (𝑋1, 𝑋2, … , 𝑋𝐿)
with a predefined length 𝐿 known as the lag

 𝑋1 =

𝑣𝑡−𝐿
𝑟𝑡−𝐿
𝑧𝑡−𝐿

, 𝑋2 =

𝑣𝑡−𝐿+1
𝑟𝑡−𝐿+1
𝑧𝑡−𝐿+1

, … , 𝑋𝐿 =

𝑣𝑡−1
𝑟𝑡−1
𝑧𝑡−1

, and 𝑌 = 𝑣𝑡

 Since 𝑇 = 6,051, with 𝐿 = 5 we can create 6,046 such (𝑋, 𝑌) pairs

 We use the first 4,281 as training data, and the remaining as test data. We fit an

RNN with 12 hidden units per lag step (i.e. per 𝐴𝑙)

44

RNN Results for NYSE Data

 Predictions and truth for test period (black: truth, orange: predicted)

 𝑅2 = 0.42 for RNN

 𝑅2 = 0.18 for straw man - use yesterday's value of Log trading volume to

predict that of today

45

Document Classification: IMDB Movie Reviews

 The IMDB corpus consists of user-supplied movie ratings for a large collection

of movies. Each has been labeled for sentiment as positive or negative.

 We have labeled training and test sets, each consisting of 25,000 reviews, and

each balanced with regard to sentiment

 We wish to build a classier to predict the sentiment of a review

46

Lasso versus Neural Network on IMDB Reviews

 Bag-of-words with simpler lasso logistic regression model works as well as

neural network

 Python was used to fit the lasso model, and is very effective because it can

exploit sparsity in the 𝑋 matrix

47

RNN and IMDB Reviews

 The document feature is a sequence of words 𝑊𝑙 1
𝐿. We typically truncate/pad

the documents to the same number 𝐿 of words (we use 𝐿 = 500)

 Each word 𝑊𝑙 is represented as a one-hot encoded binary vector 𝑋𝑙 (dummy variable) of

length 10𝐾, with all zeros and a single one in the position for that word in the dictionary

 This results in an extremely sparse feature representation, and would not work well

 Instead we use a lower-dimensional pretrained word embedding matrix 𝐸
(𝑚 × 10𝐾) for mapping

 This reduces the binary feature vector of length 10𝐾 to a real feature vector of dimension

𝑚 ≪ 10𝐾 (e.g. 𝑚 in the low hundreds.)

48

RNN on IMDB Reviews

 We then fit a more exotic RNN than the one displayed - a LSTM with long and

short term memory. Here 𝐴𝑙 receives input from 𝐴𝑙−1 (short term memory) as

well as from a version that reaches further back in time (long term memory).

Now we get 87% accuracy

 These data have been used as a benchmark for new RNN architectures. The

best reported result found was around 97%

 For more leaderboards on common benchmark dataset, see

https://paperswithcode.com/sota

49

https://paperswithcode.com/sota/sentiment-analysis-on-imdb
https://paperswithcode.com/sota

